Headquarters U.S. Air Force

Integrity - Service - Excellence

Technology of the SCAPS

Investigative Sensors and Tools

James Campbell US Army Corps of Engineers 30 January 2001

Technology of the SCAPS

- Site
- Characterization and
- Analysis
- Penetrometer
- System

Talking Points

- SCAPS Overview
- Technology and Tools
- Production and Cost Savings
- Conclusion

SCAPS Overview

- SCAPS Funded by Army Environmental Center (AEC)
- **Tri-Service Effort**
 - Air Force Developed Tunable Laser System (ROST)
 - Army Developed Laser Induced Fluorescence Probe and Delivery System
 - Navy Developed Nitrogen Laser System
- Six Government Owned Trucks

SCAPS Overview

- Speed Site Characterization of Military Installations
- Monitor Implemented Remedial Actions
- Decrease Cost

SCAPS Overview

Integrity - Service - Excellence

Technology and Tools

- Laser Induced Fluorescence (LIF) Probe with Stratigraphy Sensor - Developed by Army
- Power Punch TM Developed by Geo Insight TM
- HydroSparge and Direct Sample Ion Trap Mass Spectrometer (DSITMS) - Developed by Oak Ridge National Laboratory
- Membrane Interface Probe to Detect Chlorinated Compounds Developed by Geoprobe Systems TM
- Video Probe Commercially Available from ARA

Laser Induced Fluorescence (LIF)

- Employs ROST Laser or Nitrogen Laser Systems
- Defines Horizontal and Vertical extent of POL's
- Defines Subsurface Stratigraphy
- Readings are Taken Every 4 Inches Vertically
- Newer Laser Systems Define POL Type with Post Processing
- Laser Systems are Commercially Available

Power Punch

HydroSparge

- Collects and Detects Volatile
 Organic Compounds in
 Groundwater
- Employs a Direct Sample Ion Trap Mass
 Spectrometer (DSITMS) for Analysis
- Contamination Identification and Quantification
- DSITMS Field Method 8265Accepted by EPA

Membrane Interface Probe (MIP)

- Defines Volatile Organic
 Compounds Not Medium
 Specific as HydroSparge
- Multiple Samples may be Collected with Depth
- Sample Intervals are User Defined
- SCAPS Currently Uses a DSITMS for Onboard Analysis Other Detectors may be Used
- SCAPS MIP also Defines Subsurface Stratigraphy

MIP Advantages

- In Field identification of contaminant distribution
- Field quantification possible between 300 ppb and 100,000 ppb using ion trap mass spectrometer
- Field identification of volatile organic compounds when using ion trap mass spectrometer
- SCAPS MIP has grout through the tip capability
- Enormous amount of data can be generated in short time period
- Sample interval can be selected as long as minimum separation > 1 foot

MIP Disadvantages

- Enormous amount of data can be generated
- Sampling requires a pause in push advance, MIP takes longer than other types of direct pushes
- Mass spectrometer cannot distinguish isomers of same compound
- Heater block and selective membrane are individually produced, replacement may change system operating parameters (heating rate differs or to higher temperature, different sensitivity to lower contaminant concentrations)

Video Probe

- Real Time Video of Subsurface
- Grain Size Analysis
- Thin Stratigraphic Layer Delineation

Production

- SCAPS has been to 37 Air Force Bases
- Production Example of In-Situ Sensors
- Production Example of Chemical Sensors

Production of In-Situ Sensors

First Trip 5 Days				Second Trip 7 Days		
	Total Footage	Total Pushes	Average	Total Footage	Total Pushes	Average
LIF	1,386	30	46	2,052	44	47
Soil Sample	307	11	28	335	12	28
PrePush	170	34	5	8	2	4
Sample Point	-	-	=	1,171	36	33
Totals	1,863	75	25	3,566	94	38

Days do not include Mob/Demob time

Production of Chemical Sensors

■ Total Pushes	54
■ Total Days	24
Number of Samples Analyzed	702
Average Depth	50
■ Total Depth	2,677

Cost Savings Example

Courtesy Tulsa District

Conclusion

Questions?

Thank You